An Explicit Fourth-Order OrthogonalCurvilinear Staggered-Grid FDTDMethod for Maxwell’s Equations

نویسندگان

  • Zhongqiang Xie
  • Chi-Hou Chan
  • Bo Zhang
چکیده

An Explicit Fourth-Order Orthogonal Curvilinear Staggered-Grid FDTD Method for Maxwell’s Equations Zhongqiang Xie,∗ Chi-Hou Chan,† and Bo Zhang∗,† ∗School of Mathematical and Information Sciences, Coventry University, Coventry CV1 5FB, United Kingdom; and †Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong E-mail: [email protected], [email protected], and [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Non-dissipative Staggered Fourth-order Accurate Explicit Finite Difference Scheme for the Time-domain Maxwell’s Equations

We consider a divergence-free non-dissipative fourth-order explicit staggered nite di erence scheme for the hyperbolic Maxwell's equations. Special one-sided di erence operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include diele...

متن کامل

Development of an Explicit Symplectic Scheme that Optimizes the Dispersion-Relation Equation of the Maxwell’s Equations

In this paper an explicit finite-difference time-domain scheme for solving the Maxwell’s equations in non-staggered grids is presented. The proposed scheme for solving the Faraday’s and Ampère’s equations in a theoretical manner is aimed to preserve discrete zero-divergence for the electric and magnetic fields. The inherent local conservation laws in Maxwell’s equations are also preserved discr...

متن کامل

On Time Staggering for Wave Equations

Grid staggering for wave equations is a validated approach for many applications, as it generally enhances stability and accuracy. This paper is about time staggering. Our aim is to assess a fourth-order, explicit, time-staggered integration method from the literature, through a comparison with two alternative fourth-order, explicit methods. These are the classical Runge-Kutta method and a symm...

متن کامل

Water hammer simulation by explicit central finite difference methods in staggered grids

Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...

متن کامل

A Staggered Grid High-Order Accurate Method for Incompressible Viscous Flow

A high-order accurate method for the numerical solution of the incompressible Navier-Stokes equations is developed. Fourth–order, explicit, finite difference schemes on staggered grids are used for space discretization. The explicit, fourth–order Runge–Kutta method is used for time marching. Incompressibility is enforce for each Runge–Kutta stage either by a local pressure correction, which is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002